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Diffuse X-ray scattering data from a crystal of wiistite, Fey 4,50,
are presented. Satellite reflections corresponding to an incommen-
surate repeat distance of ~2.72 in alf three cubic directions were
observed (the T phase). The satellites were diffuse, anisotropically
clongated, interconnected by weaker continuous streaks, and negi-
gible in intensity beyond first order. Monte Carlo computer simula-
tions have been carried out which demenstrate that this diffraction
behavior is consistent with defect clusters forming a paracrystalline
(or highty distorted) lattice, The paractystalline distribution which
best fits the observations is such that the spacing between defects
tends to be maintained fairly constant, but relative lateral transla-
tions may occur more variably. When these lateral translations
are suppressed, additional superlattice peaks appear which are
consistent with the P” phase diffraction patterns. The diffuse sate!-
lites are systematically more intense on the low-angle side of a
Bragg reflection than on the high-angle side. This behavior may
be understood in terms of the well-knewn afomic size effect and
is consistent with a local condeaction of the structure arouad regions
of low scattering power (defect clusters) and compensating expan-

sion in other parts of the structure.  © 1995 Academic Press, Ing,

INTRODUCTION

Unlike the neighboring cations in the periodic table
{Mn, Co, Ni), iron does not form a stable monoxide.
The wiistite phase, Fe,_ O, remains stable to the lowest
temperature (576°C) for the eutectoid composition x =
0.055 {1). Below that temperature, wiistite bulk composi-
tions are represented at thermodynamic equilibrium by a
mixture of metallic iron and magnetite, Fe,0,. The com-
position range increases with pressure and temperature,
the smallest x value obtained to date for a single-phase
sampte being 0.02 at 7 GPa and 1200°C (2). Quenched
samples of wiistite can be studied under ambient condi-
tions. However, heat treatment at temperaturcs as low
as 225-300°C is sufficient to initiate decomposition into
a multiphase mixture (3, 4). The only evidence for the
existence of stoichiometric FeQ is provided by Missbater
spectra from such a thermally decomposed sample, which
shows negligible e’ i the oxide phase (3). This material

appears to be a transien{ intermediate between nonstoi-
chiometric wiistite and iron.

Wiistite occurs frequently as an intermediate in iron
redox reactions. 1t acts as a catalyst in carbon gasification
{6}, wromatic hydrocarbon cracking (7). and noxious gas
conversion (8). In solid solution with MgQO, it appears to
be & major constituent of the Earth’s lower mantle (9).
Furthermore, the crystal structure of wilstite is a defective
variant of that of rock salt. Chemically, the relationship
between wilstite and stoichiometric FeO can be ex-
pressed as

3Fe’t = 2Fe* + 1 1,

where [ ] represents a cation vacancy. However, Fe®*,
Fe’*, and vacancies do not form a simple solid solution
on the rock salt cation sublattice. Some tetrahedral inter-
stices of the structure were found to be occupied by Fe
in neutron and X-ray diffraction studies (10-13). Manenc
et al. {14} reported the occurrence of an incommensurate
superstructure with cubic a parameter about 2.6 times
that of the ideal rock salt subcell. Koch and Cohen (12)
reported this value more precisely as 2.73 for x = 0.077,
decreasing 10 2.61 for x = 0.098. The superlattice parame-
ter also decreased to 2.61a for their smallest x value
(0.053}, but they noted that the superstructure diffraction
peaks were extremely broad, so this value is not accu-
rately determined. Other values collated by Bauer and
Pianelli (15) cluster strongly around 2.68q. Yamamoto
(16) reported 2.5{a for the x = 0.098 composition. The
small and unsystematic variation in the modulation vector
with composition suggests that thermal history may be
the most important factor in determining the size of the su-
percell.

Thermodynamic data for wiistite (17-19) indicate that
x does not increase as the Héth power of p(0,) as would
be expected for an ideal solid solution of vacancies and
both iron species. The dependence is between 3rd power
{small x) and 10th thigh x), and x decreases with tempera-
ture at constant p(O,) rather than increasing as would
be expected (20); there is evidently considerable defect

398

B022-4590/95 312,00
Copyright & 1995 by Academic Press, Inc.

Al riohts Af ranendictinn in ang foem eacaroad



DEFECT DISTRIBUTIONS IN WUSTITE, Fe,_,0

clustering in the structure, Various different cluster geom-
etries have been proposed, but there is not yet general
agreement on which are correct. The situation is further
complicated by the occurrence of two ordered phases for
oxidized compositions x > 0.07. These were detected in
the high-temperature work of Vallet and Raccah (17, 18),
who defined compositional and temperature limits of oc-
currence for them; they have also been charactenized in
guenched samples by electron microscopy (3, 4) . The
phase relations and physical properties of the different
wilstites, Fe, and Fe,O,, have been thoroughly reviewed
(20, 21).

Using the terminology of Maneng (3), the hypothetical
fully disordered phase is P, the 2.6a cubic phase is P’.
The next phase, P”, was refined as 5a X 52 % 5a polar
arthorhombic in symmetry by Andersson and Sletnes (4)
but may be 2.5a X 5a orthorhombic (Nagakura ef al.
(22); third principal axis not characterized), and the third
phase, P, is similar but more ordered, giving sharper
diffraction spots. The lattice parameter study by Haya-
kawa ef al. (23) indicates thai there 15 no volume change
associated with formation of the more ordered phases.
Room-pressure subcell lattice parameters agree well with
the linear relation a (A) = 4.334 — 0.478x (2). However,
the datareviewed by Baner and Pianelli (15) show a depen-
dence of cell parameter on temperature of crystallization.
1300°C samples gave smaller g values than 700°C samples
by about 0.01 A, corresponding to a change in x of 0.02.
This was interpreted as showing an increase in tetrahedral
site occupancy relative to vacancy number at high temper-
ature, although the opposite trend was reported in the
neutran powder diffraction study of Radier ef af. (24).

The defect cluster geometry and distribution in the P’
phase is clearly important to the stability of wiistite over
the greater part of ifs range in pressure—tempera-
ture-composition space, [u this paper, we present diffuse
X-ray scattering data and simulated diffuse scattering pat-
terns which provide constraints on the distribution of de-
fect clusters and local atomic displacements. In the P’
phase the incommensurate satellites are diffuse, lie on
diffuse streaks, and are of negligible intensity beyond
first order. High-resolution electron micrographs of the
P’ structure show considerable variation in vector length
and intervector angles in the defect arvay (25). We show
that this behavior is consistent with a description of the
P’ phase as a paracrystalline array of defects embedded
in the rock salt substructure. This simple model semiquan-
titatively describes the observed X-ray scattering behav-
ior without presuming the incipient development of large,
ordered supercells. An important distinction between the
paracrystal and a more conventional incommensuvrate
model is that the modulation wave vector displays a sig-
nificant variation in magnitude and direction for the para-
crystal.
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The sample studied in the present work has x = 0.057,
very close to the eutectoid composition (26); data for this
composition of maximum thermal stability should help to
elucidate why wiistite occurs with nonzero x and a com-
plex defect structure, but not as stoichiometric FeQ.

Wiistite diffuse scattering has been studied previously
for various composiitons at high temperature (840 and
900°C) (27, 28). In Hayakawa ez al. (27) the pattern of
diffuse maxima around the Bragg peaks appears to have
been similar to that secen in our sample. However, in
Garstein et al. (28), the samples were more P'-like in
diffraction behavior. Though the studies of Hayakawa et
al. (27), as well as studies of quenched material (12, (6,
29, this study), have consistently found a local contraction
of the lattice around the clusters, Garstein er al. (28) found
that some of the cations adjacent to the defect clusters
moved away from the clusters.

Defect Geomeltry

Atiempts have been made to refine the modulated struc-
ture as a commensurate superstructure (12, 16, 30). The
refinements all supported the concept of the defects being
clusters of VT tetrahedra, where V is a vacant octahedral
cation site and T is a tetrahedral cation. Such clusters were
found to be more stable than smaller vacancy-interstitial
aggregates by 1-2 eV per vacancy in the lattice energy
calculations of Catlow and Fender (31). The wilistite sam-
ples examined in the diffraction studies were relatively
oxidized (x = 0.08-0.10), so the clusters were large {three
to four tetrahedra). The high-temperature neutron diffrac-
tion work (13} showed that the clusters increase in size
with x. For a composition similar to that of this study
(x = 0.053), the number of tetrahedra per cluster was
calculated to be [.1-1.4 = (.3 at B00°C. The types of
cluster geometry that are possible proliferate rapidly with
increasing number of component tetrahedra. X-ray and
neutron diffraction {32, 33, 28) and lattice energy calcula-
tions {31, 34} have not yet fully characterized cluster ge-
ometry as 2 function of composition and temperature. In
more oxidized wiistites, a range of defect clusters V,T,,
ViTs, Vi5T4, etc. appears to be present (24). For Fe-
rich compositions like that of this study (x = 0.057), the
possibilities are more limited.

Assume that there is one defect cluster per **supercell.””
For the observed & = 2.7a modulation, the defects are
characterized by a mean 48°x = A = (V-T) = 4.5. This
value is proportional to the cube of the modulation wave
vector, so small uncertainties in & affect A disproportion-
ately. For k = 2.5a, A = 3.56 at this composition.

For a single VT tetrahedron, A = 3. Pairs of tetrahedra
may be linked through corner-sharing of a vacancy (V,T,;
A = 5) or edge-sharing (V. T,; A = 4). Lattice energy
calculations fail to demonstrate a consistent preference
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for edge- or corner-sharing of the tetrahedral clusters (31,
34). However, the simplest tetrahedral groups with A >
4 are the corner-sharing pairs. Therefore, it seems likely
that our defect clusters are a mixture of isolated tetrahedra
(25%) and VT, groups (73%). The percentages are uncer-
tain due io the &* dependence of A. For k < 2.6a and
x = 0.057, single tetrahedra would be expected to predom-
inate.

For the simulation work of the present study, where
the relative dispositions of neighboring clusters is more
important than the exact identity of each cluster, all have
been assumed to be singie V,T tetrahedra.

EXPERIMENTAL

The wilstite sample examined in the present study was
taken from a single-crystal (001} slice approximately 1.5
mm thick and 6 mm in diameter. This was a section of a
boule grown by the floating-zone technique (35). The
boule had been equilibrated for 60 hr with a CO,-CO gas
mixture chosen to yield the x = 0.055 wiistite composition
at equilibrium. Powder diffraction and density measure-
ments confirmed the final composition as x = 0.057. Re-
flected light microscopy and Laue diffraction confirmed
the nature of the sample and the absence of iron or magne-
tite precipitates (26),

A fragment approximately 1.5 x 2 mm was broken
from the slice. This was mounted on a goniometer and
orientated so as to rotate about a [001] direction. The
crystal was then ground into a cylinder (~0.7 mm diame-
ter) using the crystal grinder described by Wood ef al.
(36). Preliminary X-ray examination showed the presence
of powder rings due to surface damage. Theretfore, the
crystal was cleaned for a few minutes in concentrated
HCI. This treatment removed the streaking satisfactorily.

Layers of diffraction data normal to ¢* were collected
using MoK« radiation on the position-sensitive-detector
diffraction system described by Osborn and Welberry
(37). Examples of these observed diffraction patterns in
the form of gray-scale images are shown in Figs. ia, b,
and 1d. Intense FeK fluorescence from the sample was
suppressed using an aluminium sheet of ca. 0.3 mm thick-
ness as a filter. A/2 scattering, which was initially quite
obtrusive, was eliminated by use of an excitation potential
of ~32kV, insufficent to excite emission of X-rays of this
wavelength. These less-than-ideal experimental condi-
tions, together with the fact that MoK« radiation is less-
efficiently detected and gives relatively poor spatial reso-
fution, provided data that were less satisfactory than we
would normally expect to obtain. In order to obtain better
signal-to-noise and improved spatial resolution, some
later experiments were carried out using CoKa radiation,
for which there are no fluorescence problems, but for
which the accessible region of reciprocal space is
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FIG. 1.
The (h & 1) section. (c) An enlarged region of the (# & 0) section around
(2 00). (d) The {h k 0.4) section. {a}, (b), and (d) were recorded using
MoKe. The maximum diffraction angle shown corresponds to ~51° of
2d. {c) was recorded using CoKe to obtain better resoiution. The circuiar
features seen in the MoKo pictures are due to parasitic scattering from
the beam-stop. “S’" indicates a second-order incommensurate peak,

Observed diffraction patterns. (a) The (h & 0) section. {b)

restricted. Figure 1c shows a more detailed view of the
region around the (2 0 0) reciprocal point obtained using
CoKa. Figure 1d is included to show that there are more
extended regions of diffuse scatter in addition to the in-
commensurate peaks. It is not the intention in the present
paper to try ta model this extended scattering but to con-
centrate on the incommensurate diffuse peaks.

PARACRYSTAL MODEL FOR DEFECT DISTRIBUTION

11 is clear from Fig. | that not only are the incommensu-
rate peaks themselves quite diffuse with very anisotropic
shapes but there is also diffuse streaking connecting the
peaks. This streaking is strongest in directions tangential
to the vector from the nearest pareat reflection. The peaks
themselves are somewhat elongated in this same tangen-
tial direction. The other remarkable feature of the patterns
is that there is very little evidence of higher-order satellite
peaks. If we assume the basic modulation vectors are
Sa*, &a,%, and da;* then we observe peaks at (h = n;3,
k £ nd, [ £ nid) for ny, ny, ny = 0 or 1 only. The only
exception to this is a very broad second-order peak at
{4-28, 0, 0), indicated by **S”" in Fig. la.

These features taken together are characteristic of the
diffraction patterns of highly distorted lattices, for which
Hosemann and Bagchi (38) coined the name paracrystals,
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and for which some of the concepts were further devel-
oped by us under the name of Gaussian growth—disorder
models (39-41). In this section we show how the diffrac-
tion pattern of wiistite can be understood in terms of a
model in which defects are situated on the sites of such
a highly distorted (or paracrystalline) lattice. Direct evi-
dence for this as a viable model is afforded by a brief
report by lijima (25) in which an electron micrograph of
a direct image of a defect distribution was shown, very
reminiscent of paracrystalline distributions,

If the real-space distribution can be considered to be a
perfect lattice of ideal wiistite mulfriplied by a second
larger-scale paracrystal distribution function describing
the pasition of the defects, the diffraction pattern will then
consist of the ideal wilstite diffraction patiern convoluted
with the diffraction pattern of the paracrystal distribution.
That is, around each parent Bragg peak appears the motif
of scattering which is the Fourier transform of the para-
crystal distribution. However, it is clear from the ob-
served data that the distribution around each parent Bragg
peak is asymmetric, those peaks occurring at —& being
invariably much stronger than those at +6. Such asymme-
try is again a very characteristic diffraction effect cansed
by local strains induced by differences in atomic size, the
so-called atomic size effect (sce (42—44)}. In the present
case it 1s necessary to assume that the ideal wiistite struc-
ture relaxes around the defect sites, in such a way that
the average lattice spacing is decreased in the neighbor-
hood of the defects (which scatter less strongly than the
rest of the structure) and is relatively increased elsewhere.
To test these suppositions we constructed a computer
model from which diffraction patterns were calculated for
comparison with the observed patterns.

COMPUTER MODELING

With the advances in computer power in recent years
it has become feasible to mode! disordered structures in
three dimensions. In these studies a model crystal of typi-
cal dimensions 32 x 32 x 32 unit cells is set up and,
using interatomic interactions of various kinds, allowed
to develop via Monte Carlo or other types of computer
simulation to obtain a final set of atomic positions, site
occupancies, eic. from which a model diffraction pattern
can be calculated. Such methods have been successfully
applied to a quite diverse range of problems (45-48). At
present this size model represents something close to a
practical upper limit, since simulation time and subse-
quent calculation of the diffraction pattern become pro-
hibitively long if substantially larger samples are used. In
the present case this imposes a severe restriction on the
effectiveness with which a paracrystalline lattice of de-
fects can be introduced into the wiistite lattice, since the
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mean spacing of such a lattice, ~2.7 X the cell repeat,
means that only about 12-13 defects can be inserted in
any direction in the lattice and the variation in spdcing
and orientation of the basic paracrystal vectors, which
are characteristic of a given paracrystalline lattice, can
only be rather poorly represented in such a small sample.
For this reason, in what follows, we initiaily concentrate
on 2D models, where the various effects can be more
adequately demonstrated. The observed zero-level (h &£ Q)
diffraction pattern (Fig. 1a) corresponds 10 a projection
of the structure down the crystallographic c-axis, and
we aitempt to model this. Using comparable computer
resources, simulation in 2D can be carried out on samples
corresponding to 256x256 unit cells and the number of
defects in a given direction, (~100) is sufficient to allow
adequate representation of the variation in the paracrys-
talline lattice,

Finally, in order to demonstrate that the same effects
do also hold in 3D we present some results for 3D simula-
tions, for which, however, the paracrystal distributions
cannot be so adequately represented.

GENERATION OF THE PARACRYSTAL ARRAYS

The paracrystalline lattices used in the present work
were generated using the Gaussian growth-disorder algo-
rithms (39, 40) examples of which were also discussed in
Welberry (41).

X, ;isanormally distributed (Gaussian) random variable
with zero mean and unit variance, associated with the
i,jth site of a 2D lattice. The probability that X, ; takes a
particular value given the values of the variables on the
adjacent sites X, ;, X;;_ 1, X;_y ;- i given by the ex-
pression

1je

P(Xf,j/Xf—l.j’ Xl"jﬁl ’Xi*]‘jﬁl) = K eXp

_ {(Xi‘j —rXiy 8Kt rSXi—Lj—l)z}
201 — r3(1 = 59 '

{1}

The right-hand side of this equation is a Gaussian with a
mean of rX;_, , + sX;,y — rsX,_,,;, and vanance of
{1 — r5(1 ~ 57). The whole array of X, ; values may thus be
generated using [1] in conjunction with a pseudorandom
number generator which produces Gaussian distributed
random numbers. Similar (but simpler) formulae for the
two 1D boundaries also exist, and these must be set up
first. Then use of [1] leads to a distribution that is immedi-
ately stationary and has nearest-neighbor correlations
given by the parameters r and s, In particular,

X X ) =X Xm0 = 8 (X X -0 = s [2)
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If X, ; is taken to represent an atomic displacement in the
x-direction then r represents a longitudinal correlation
(with the displacement and correlation in the same direc-
tion) and s a transverse cotrelation (displacement and
correlation at right angles). To create a 2D paracrystal
involving both - and y-displacements, a second set of
random variables, Y, ;, with identical transverse and longi-
tudinal correlations is required. The two independent sets
of Gaussian variables X; ; and ¥ ; may be then be used (o
construct the distribution of defects in the wiistite lattice,
as follows,

In projection the face-centered cubic array of Fe atoms
in wiistite appears as a simple square array {see Fig. 2).
For the present study we neglect entirely the oxygen
atoms. This is justified on two grounds. Since they form
a complete array the O atoms will contibute to the diffuse
scattering only as a result of displacements from their
average sites, and second, they have much smaller scat-
tering factors than Fe and thus only contribute ~10% of
the total scattered intensity. We use as a single defect a
cluster consisting of a tetrahedron of Fe vacancies to-
gether with an interstitial Fe** ion. In projection this ap-
pears as a square of four vacant Fe sites with the Fe’*
ion at the center.

We label the Fe sites, which in 2D occur on a simple
2.15A square lattice, by indices r and m, where | < =&,
m < 512. Defects, made by removal of Fe from the sites
moann+ Lmyn,m+ bon+ 1, m+ 1 and replacement
with an Fe* at n + &, m + 3, are inserted for n,m given by

il

n=nin{(5.4i + oX; ;)

: . (3]
nint(3.4j + ot, ),

m

where nint means ‘‘nearest integer,’” and o is a standard
deviation used to modify the originally unit variance of
the random variables. The indices { and j vary over the
paracrystalline array. In Fig. 3 we show two examples to

®

@

@ ® Fe

° O Vacancy

n+l,m n+l, m+l

FIG. 2. Schematic diagram showing the form of a tetrahedral defect
cluster in the 2D simuiations and the [abeling of the sites.
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FIG. 3. Plots of regions of the 2D paracrystal defect distributions
corresponding to the examples whose diffraction patterns are shown in
Figs. 4a and 4b. In (a) the longitudinal correlation, r = 0.99 and the
transverse correlation, s = 0,95, In (b} the longitudinal correlation, r =
0.95 and the transverse correlation, s = 0.99. In both cases the variation
of the position of the defects about an upderlying regular lattice,
o = 2.5 X a5, where g, = a/2 is the repeat distance in the projected
wilstite lattice.

demonstrate the effect of » and s on the resulting distribu-
tion of defects. In both of these examples o was 2.5 indi-
cating that a given cluster may vary from a position on a
perfectly regular array with a standard deviation corre-
sponding to 2.5 X ag, where a, = a/2 is the repeat distance
in the projected wiistite lattice. This variation corresponds



DEFECT DISTRIBUTIONS IN WUSTITE, Fe,_,0

to ~46% of the paracrystal lattice repeat. In Fig. 3a the
longitudinal correlation r is dominant, while in Fig. 3b the
transverse correlation s is dominant. In Fig. 3a the spacing
between defects is maintained fairly rigidly while the rela-
tive lateral displacement is more variable. In Fig. 3b the
spacing between defects is more variable but their relative
lateral displacements are small, resulting in rather
straighter rows of defects. The diffraction patterns calcu-
lated from these two distributions, using ihe algorithm of
Butler and Welberry (49), are shown in Figs. 4a and 4b,
respectively. For these calculations all atoms were as-
sumed to be situated exactly on the idealized sites de-
picted. It is clear from these two examples that, although
these patterns exhibit no asymmetry, the orientation of
the streaks in Fig. 4a is similar to that in the X-ray pat-
terns, while that in Fig. 4b is not. Similarly, the satellite
peaks in Fig, 4a are elongated in the same direction as in
the X-ray pattern, whereas in Fig. 4b they are not.

RELAXATION AROUND THE CLUSTERS

A simple Monte Carlo algorithm was devised to intro-
duce size-effect distortions around the defects, which had
been incorporated into the 2D lattice as described above.
For the present work we assume a simpie interaction
potential in which harmonic (Hooke’s law) springs con-
nect peighboring primary Jattice sites in the {10} and (11}
directions. The Hamiltopian F is given by

E= Eb C;lb(Rab - dab)z‘ [4]

Here the summation is over all nearest-neighbor pairs of
sites in the {10y and {i 1) directions. The equilibrium }ength
of the spring, R, , between a pair of sites ab was assumed
to be equal to (I + &,)a, for (10} springs and V2(1 +
g0, for (11} springs. d,, is the instantaneous length of
a given intersite vector. After some initial experimenta-
tion to find appropriate values, the distortion parameter
£,, Was set to be —0.09 for vectors between a vacant site
and an occupied site, +0.012 between two occupied sites,
and 0.0 between two vacancies. After distortion this
choice of parameters resulted in the mean cation/vacancy
vector being reduced by -3%. The strengths of the force
constants, C,,, for (10) and {11) springs were assumed
equal since they are both projections of equivalent 3D
vectors. The value of C,, for springs between two vacant
sites was taken to be 100 times greater than for any other
spring so that the geometry of the basic vacancy cluster
was rigidly maintained. The interstitial cation was placed
at the center of mass of the rigid group of four vacancies.

Monte Carlo simulation was carried out for 50 cycles
of iteration, a cycle defined as that number of individual
steps necessary to visit each lattice site once on average.
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FI1G. 4, Diffraction patterns calculated from the 20} simulations. (a)
and (b) were calculated from the distributions shown in Figs. 3a and
3b, respectively, before the Fe atoms were allowed to relax from their
ideal sites (see text for more details). {c) was calculated from the same
distribution as {a) after relaxation in which surrounding atoms moved
in toward a defect. (d) was calculated from the same distribution as (a)
afier relaxation in which surrounding atoms moved away from a defect.
fe) was calcnlated from a similar model 1o (¢) but in which the value of
the transverse correlation, 5, was reduced, (f) shows an eniarged region
of () in the neighborhood of the (2 0 0) reciprocal point. In ail the
calculations the Bragg peaks were omitted.

After each cycle, lattice averages of the different types
of nearest-neighbor distances were computed to monitor
the progress of the relaxation. Final atomic positions were
used to calculate the diffuse diffraction pattern, using the
algorithm of Butler and Welberry (49). The diffraction
pattern shown in Fig. 4c corresponds to the same example
as Fig. 4a but after relaxation has been carried out. It
is now clear that the asymmetry observed in the X-ray
patterns is effectively reproduced, while the paracrystal-
induced streaking between the diffuse peaks is main-
tained. To contrast this we show in Fig. 4d the same
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example but in which the distortion has been applied in
the opposite sense {i.c., the surrounding cation sites tend
to move away from a defect). Here it is seen that the
direction of the asymmetry is reversed.

While the asymmetry of the intensities in the peaks
around a given parent Bragg peak is governed by the
magnitude and direction of the distortion parameter, €,,,
the relative magnitudes of the {I0} and {l{} peaks are
affected by the values of the correlation parameters r and
s. In the X-ray pattern of Fig. 1c¢ it is seen that around
the (2 0 0) Bragg peak the {10} satellites are much stronger
and more distinct than the {11} satellites. In the calculated
pattern of Fig. 4c, which otherwise corresponds well to
the observed pattern, the {11} satellites are still relatively
strong and quite distinct. In Fig. 4e a similar example
is shown, in which the transverse correlation has been
reduced from 0.95 t0 0.9. Here the {11} satellites are now
clearly diminished in intensity and sharpness. Figure 4f
shows an enlargement of the region around the (2 0 0)
position (cf. Fig. 1c). It should be noted in all of these
calculated patterns that the Bragg peaks themselves are
omitted.

SIMULATIONS IN 3D

The 2D results described above indicate that the form
of the diffraction patterns can be explained in terms of a
paracrystal-like distribution of defect clusters within a
matrix of the ideal wiistite structure, followed by refax-
ation of the surrounding cations toward the defect cluster,
For the reasons stated earlier we are unable to simulate
in three dimensions paracrystalline arrays of defects in
which the interdefect vector varies in length and orienta-
tion to an extent comparable to those 2D models. Never-
theless we made some calculations in 3D, with a reduced
degree of variation, in order to show that the same basic
distortion mechanism can be carried over to 3D and that
this mechanism does account for the asymmetry of the
satellite intensities in other nonzero layers of reciprocal
Space.

A property of the paracrystal distributions like those
used in 2D is that the Gaussian-distributed displacements
have a very large variance but at the same time have very
high correlations to near-neighbor dispiacements. This
high correlation means that despite the high vanance of
the actual position of the defects the interdefect distance
has a fairly low variance. In fact it was shown (39) that
the variance of the distance, o, 1s related to the variance
of the displacements, o, and the correlation, r, between
them, by

ci=a¥l—-r). {51
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It was also shown that rather similar diffraction patterns
could be obtained for different values of o if the correla-
tion, r, was adjusted to maintain the same value of oy.
While a value of ¢ = 2.5 X a,, where a, = a/2, was used
for the 2D simulations described above, a value of no
more than o = 1.0 X g, was found to be practical for the
3D simulations. With this 6.25-fold decrease in ¢?, the
values of the correlations needed to produce similar dif-
fraction patterns were correspondingly reduced. For the
longitudinal correlation, r = 0.99, used in the 2D example
of Fig, 4e. a value r = 0.9375 is now required to obtain
the same value of oy . However, for the transverse correla-
tion, s = 0.9, much smaller values of s, = 0.375 are
now required.

Apart from the limitation of needing to keep o small
imposed by the small sample size, simulation in 3D was
otherwise very similar to the 2D description above. The
basic distribution of defects was generated using a 3D
Gaussian growth disorder algorithm, as described in
Welberry and Carroll (40). Note that this defect array is
a primitive cubic array. To create a 3D paracrystal involv-
ing x, ¥, and z displacements three independent sets of
random variables, X,;;, Y, ;. and Z;;, with identical
transverse and longiiudinal correlations are required.
These are then used to construct the distribution of defects
in the wiistite lattice in a similar manner to that described
for 2D.

The Fe sites occur on an fec [attice of dimension a =
4.30 A, with Fe atoms within the unit cell at (0,0,0),
(3,3,0), (0,4,%), (4,0.4). A tetrahedral defect can thus occur
centered on any one of eight sites within the unit cell
G+ in, i+ im y+ 3D, wheren, m, I = 0or 1. Itis
convenient therefore to represent the position of a defect
at any position in the lattice by the indices n, m, and /
which take integral values on a primitive cubic lattice of
spacing a, = a/2. For the arrays used in the present work
1 = n, m, | < 64. Defects can occur in one of two different
orientations. For n + m + [ even, tetrahedra point up
along [111], while for n + m + [ odd, they point down.

Defects were placed at points in the wiistite lattice de-
fined by n, m, I, where

n=nint(5.4i + oX; ;)
m = nlnt(5.4_] + UYf.j.k) [6]
! =nint(5.4k + aZ; ;).

Here nint means nearest integer, and o is a standard
deviation used to modify the original unit variance of the
random variables (in this case o = 1.0 X ay}. The indices
i, J, k vary over the paracrystailine array. The vaiue 5.4
is chosen to obtain a mean defect spacing of 2.74a.
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Relaxation around the defects was alse carmed oul in
an entirely analogous way to that described for two dimen-
sions. With reference to Eq. [4], harmonic springs con-
nected all (110) pairs of Fe sites and these springs had
equilibrium lengths equal to V2(1 + g,,)a, as before. The
values of g, that were used in the simulations were ~0.05
for an occupied and a vacant site, +0.008 for two occupied
sites, and 0.0 for two vacant sites. These values for ¢,
result in atomic displacements in the neighborheod of
defects of a comparable magnitude to those observed,
for example, in the structure determination of Koch and
Cohen (12).

In Figs. 5a and 5b we show two sections, (h £ () and
(h & 1), of the 3D diffraction pattern calculated from a
simulation in whicho = 1.0 X a,, r = 09375, and 5,1 =
0.375. Note the similarity of Fig. 3a to the 2D pattern of
Fig. 4c, although the peak shapes are not so anisotropic.
Note also the general pattern of satellite spot intensities
is in broad agreement with the observed patterns, for both
the zero and first reciprocal layers.

For comparison we also carried out a simulation using
the same values o and r but with increased values of the
transverse correlations, s,r = 0.9. Corresponding patterns
for this simulation are shown in Figs. 5¢ and 5d. It is
interesting {0 note that the patterns have now developed
additional maxima between the original satellite peaks.
These patterns are clearly reminiscent of the electron

FIG. 5. Diffraction patterns calculated from the 3D simulations. (a)
and {b) were calculated from a simulation in which the longitudinal
correlation r = 0.9375 and the transverse correlations s,7 = 0,375, For
{c) and (d) r = 0.9375 and 5.7 = 0.9, {2) and {¢) are of the (7 k 0) section.
{b) and (d) are of the (# k 1) section. For boih examples o = 1.0 X g,
where a; = af2.
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diffraction patterns of the P” phase reported by Andersson
and Sletnes (4).

CONCLUSION

In this paper we have shown how the difiraction pat-
terns of a P’ phase crystal of wilstite can be understood
interms of a paracrystal-like distribution of defect clusters
embedded in the normal rock salt substructure, together
with a scheme for allowing the rock salt lattice to relax
around the defects. For simplicity the defect clusters that
have been assumed consisted of a tetrahedron of Fe va-
cancies together with an Fe*" interstitial, the so-called
V,T cluster. Although it is appreciated that for the sample
studied, for which the composition was Fe,_ O with x =
0.057, there will be appreciable numbers of larger clusters
(such as corner-shared V,T, or edge-shared VT, pairs of
tetrahedra} it is expected that this will alter this descrip-
tion only in detail. The major features of the pattern are
explained simply on the basis of the fact that the defect
clusters represent regions of lower scattering power than
the average lattice and the surrounding lattice relaxes in
such a way that atoms move in toward the defects. With
these broad features of the pattern accounted for in this
way, 1t 15 our iniention to explore the effects on the fine
details of the diffraction pattern as different kinds of defect
are introduced into the model. Work along these lines is
oW in pProgress.

The paracrystailine distribution that has been observed
is such that there is a strong longitudinal correlation and a
lesser transverse correlation. This means that the spacing
between defects tends to be maintained fairly rigidly, but
neighboring defects may more readily be translated later-
ally. The values estimated for these correlations are de-
scriptive of the anisotropic shape of the satellites and
cannot be compared with any previously reported data,
although it is clear that the general appearance of the
defect distributions that are generated show similarity to
the high-resolution electron micrograph images of Lijima
(25). When the transverse correlation is increased, the
primitive paracrystal lattice is forced to “‘lock-in’’ to the
underlying fec lattice of the rock salt sublattice and form
additional superlattice peaks consistent with the P” phase
diffraction patterns.

In addition to the incommensurate diffuse peaks we
have observed weaker more extended diffuse streaking
particularly on the incommensurate reciprocal layers (see
Fig 1). In the present work we have made no attempt to
explain these, but it seems likely that a detailed study of
them could be rewarding in terms of trying to establish
the defect cluster size distribution (over which there is still
considerable debate in the literature) and a more detailed
picture of the way in which the rock salt sublattice relaxes
around them.
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